

等径双辊倾斜铸轧及其 自适应模糊控制研究

Contents

1 研究背景

1.1 双辊铸轧技术的发展概况及优点

概况:

1846年,英国学者Henry Bessemer首次提出设想。

美、日、德、韩及中国等都投入了大量人力物力开展双辊铸轧理 论、技术和实验等方面的研究,建 成了可以生产不锈钢、碳钢、硅 钢、镁、铝等多种产品的生产线。 目前比较成熟的薄带铸轧技术:

- (1) 美国纽柯钢铁公司的Castrip
- (2) 欧洲的Eurostrip
- (3) 浦项的PoStrip
- (4) 宝钢的Baostrip
- (5) 东北大学的E2Strip

优点(与传统连铸工艺相比):

- (1) 缩短了生产流程
- (2) 减少了设备投资
- (3) 降低了能源消耗
- (4) 提高了板材性能
- (5) 减少了环境污染

1.2 双辊不对称铸轧技术的发展概况

等径双辊倾斜铸轧优点:

(1)与水平式双辊铸轧相比,能 减轻比重偏析,提高铸轧速 度,降低能源消耗;
(2)与立式双辊铸轧相比,能减 少弯曲应力,降低卷曲难度;
(3)与异径双辊铸轧相比,能降 低控制难度。

(1) 二十世纪50年代,日本学者草川隆次在双辊倾斜轧机上获得轧制成功。

(2) 1970年, Hunter研制出倾斜15°的水平双辊铸轧机。

(3) 1987年,日本NMI公司和德国的Krupp Stahl AG公司合作研制出异径双 辊铸轧机。

(4) 1983年,东北大学研制出国内第一台异径双辊铸轧机; 1990年,又建

不对称铸轧技术概况:

1.3 双辊铸轧过程控制技术的研究状况

双辊铸轧过程控制特征:

- (1) 非线性
- (2) 大时滞
- (3) 强干扰
- (4) 强耦合

由于倾斜铸轧带来的熔池流动和凝固不对称,进一步增大了铸轧 过程控制的复杂性,那么

(1) 以往的自适应控制模型能否适用于倾斜铸轧?

(2) 如果不适用,需要进行哪些修正?

目前对于倾斜铸轧带来影响,尚没有系统分析的报道,对其自适 应控制模型的研究,还是一个空白的领域。

1.4 双辊倾斜铸轧系统的设计要求

University of Science and Technology Liaoning

1.5 本课题的意义及主要研究内容

意义:

(1) 工艺意义

双辊倾斜铸轧熔池内流体冲击对凝固影响更强,倾斜出板有利于减少板材内裂;倾斜出板能有效降低卷曲难度。尤其是脆性材料,如含有较高合金元素比例的镁合金AE44,更容易断带。

(2) 理论意义

引入倾角函数描述铸轧过程,丰富了铸轧理论,使其具有更广泛的 适用性。

(3) 控制模型

建立合适的控制模型,更好地实现单一目标甚至是多目标控制。

1.5 本课题的意义及主要研究内容 主要研究内

容: 机械实现	理论模型	数值模拟	工艺控制
以辽宁科会 大学车车。 安全中的 安全中的 大学中的 大学中的 大学中的 大学中的 大学中的 大学中的 大学中的 大学	建立双辊倾 之子 之子 之子 之子 之子 之子 之子 之子 之子 之子 之子 之子 之子	研究工艺参 数 度的 立分行 讨 艺 泡和 响 对 模 析 分 适	实现对态面高控 。 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次 一次

2 双辊倾斜铸轧系统

2.1 原双辊铸轧系统2.2 双辊倾斜铸轧子系统的实现2.3 实验与分析

2.1 原双辊铸轧系统

控制策略:

应用熔池液位的遗传优化模糊控制器、铸轧力与辊缝解耦的PI自适应控制器,进行镁合金AZ31铸轧实验,其结果表明铸轧过程稳定,生产出的薄带表面无明显缺陷,厚度一致,微观组织分布均匀。

系统组成:

- (1) 水冷辊子系统
- (2) 冷却水循环子系统
- (3) 熔化及浇铸子系统
- (4) 中间包子系统
- (5) AGC液压子系统
- (6) 主传动子系统
- (7) 在线监控子系统。

双辊倾斜铸轧倾斜方式示意图

双辊倾斜铸轧倾斜方式示意图

行程开

关

为确保铸轧过程控制的安全性,控制系统另行增加三个行程开关控制定位,作为铸轧的保护系统。一旦液压位置过渡偏离,有可能导致设备倾翻失控,触发三个行程开关,PLC控制可切换到逻辑开关控制,自动停止倾翻动作,防止意外发生。控制定位开关可以实现5°、10°、15°三个不同角度倾斜。倾斜后放水平,或水平再调倾斜,动作平顺,铸轧平稳。

University of Science and Technology Liaoning

调整倾斜角度的液压缸示意图

双辊倾斜铸轧示意图

University of Science and Technology Liaoning

双辊倾斜铸轧平台主监控界面

双辊倾斜铸轧液压系统监控主界面

双辊倾斜铸轧实验

University of Science and Technology Liaoning

2.3 实验与分析

元素	AI	Cu	Mg	其他
含量%	95	2.7	1.1	1.2
浇铸温度/K	辊缝/mm	铸轧速度/m/min	液面高度/mm	倾斜角度
930	2	6	90	10°

厚度为2.4mm,宽度为200mm的7075薄带

3组实验

凝固壳偏 移

右侧晶粒 生长有方 向性

3 双辊倾斜铸轧过程建模

3.1 双辊倾斜铸轧熔池液位模型3.2 双辊倾斜铸轧铸轧力计算模型

3.1 双辊倾斜铸轧熔池液位模型

双辊倾斜铸轧系统示意图

H(t)表示熔池液位高度 G表示辊缝 R表示辊半径 S表示熔池侧面积 表示铸轧辊旋转的角速度 Qin表示金属流入熔池量 Qout表示金属流出熔池量

> 物质连续方程 $\dot{m} = \dot{m}_{in} - \dot{m}_{out}$ (3.1) $\frac{dV}{dt} = Q_{in} - Q_{out}$ (3.2)

University of Science and Technology Liaoning

3.1 双辊倾斜铸轧熔池液位模型 3.1.1 模型边值条件分析

(1)最大倾斜角度分析要形成熔池液面,最大倾斜角度必须满足

(2) 熔池断面积计算积分上下限分析

积分上限为 y=H

熔池侧面积计算积分下限分析示意图

3.1 双辊倾斜铸轧熔池液位模型 3.1.2 熔池断面积求解

(1)倾斜角度较大,熔池液位高度小于等于右辊圆心高度

S

(2) 倾斜角度较小,熔池液位高度大于等于右辊圆心高度

(3) 综合求解

因为
$$\sqrt{R^2 - ((2R+G)\sin\beta - y)^2} = \sqrt{R^2 - (y - (2R+G)\sin\beta)^2}$$

遼寧科技大學 🧭

$$S = \frac{H}{(R \frac{G}{2})\sin} (2R \ G)\cos \sqrt{R^2} (y \ (2R \ G)\sin)^2} \sqrt{R^2} y^2 \ dy$$

$$(2R \ G)\cos (H \ (R \ \frac{G}{2})\sin)$$

$$H = \sqrt{R^2} (y \ (2R \ G)\sin)^2} \sqrt{R^2} y^2 \ dy$$
(3.5)

3.1.2 熔池液位模型求解

遼寧科技大學

由式(3.8)可知, 塞棒高度h_s, 辊速, 辊缝G, 倾斜角度 等四个参数耦合 在一起, 均直接影响熔池液位的稳定。

当倾斜角度 =0°时, (3.8) 可以简化为立式铸轧形式, 即

$$\frac{dH}{dt} = \frac{ah_s \ b \ ch_s \ LG \ R \ LH}{L(G \ 2R \ 2\sqrt{R^2 \ H^2})}$$
(3.9)

由此可见,常规等径铸轧的熔池液位模型只是熔池液位模型3.8的 一个特例,新建立的熔池液位模型考虑了不同倾斜角度对铸轧的影响, 从而具有更广泛的适用性。

3.2 双辊倾斜铸轧铸轧力计算模型

铸轧力计算模型求解:

 $F = \frac{LK}{2G} H_k (R = \frac{G}{2}) \sin^2 F_0$ (3.18)

双辊倾斜铸轧铸轧力特征分析:

(1) 移动辊重力分析

铸轧力等于重力分量F1、液压力和 摩擦力的合力,相对于立式铸轧, 增加了重力分量F1的影响,改变了 摩擦力的影响,而且影响程度与倾 斜角度直接相关。

\xrightarrow{x} F1 mg sin

(2) 倾斜铸轧变形区分析 铸轧变形区形状不对称,面积减 少,必然直接影响铸轧力结果。计 算铸轧力时,积分上限为y=H,积 分下限为 $_y(R = \frac{G}{2})$ sin

由公式(3.18)可知,要在铸轧过程中保持稳定的铸轧力,则辊缝、凝固结合点位置、倾斜角度需要相应保持稳定。新建立的等径双辊倾斜铸轧的铸轧力计算模型3.18引入了补偿项,考虑了倾斜角度对铸轧力的影响。

4 双辊倾斜铸轧过程数值模拟研究

- 4.1 双辊倾斜铸轧工艺过程
- 4.2 基本假设与控制方程
- 4.3 模拟过程中几个重要问题的处理
- 4.4 工艺参数对熔池内流场和温度场的影响
- 4.5 熔池内流场和温度场不对称性分析

4.6 工艺参数调整对熔池内流场和温度场不对称性影响

4.1 双辊倾斜铸轧工艺过程

计算材料为商用镁合金AZ31

模拟参数	符号	数值
铸轧辊半径/mm	R	150
铸轧辊面宽/mm	L	200
铸轧线速度/ms ⁻¹	Vc	8/60、10/60、12/60
入口速度/ms ⁻¹	V_{in}	8/60、10/60、12/60
出口速度/ms ⁻¹	V_{out}	8/60、10/60、12/60
入口水口狭缝厚度/mm	H_{in}	2
出口厚度/mm	Hout	2
熔池液位高度/mm	H_{pool}	70、80、90
倾斜角度/°		5、10、15
浇注温度/K	Tp	973
液相线温度/K	Tm	903
固相线温度/K	Ts	848
密度/kg/m3	ρ	1630

4.3 基本假设与控制方程

基本假设:

(1)采用广义流体的概念统一处理液相区、固相区和固液两相区,这样不必处理复杂的固液界面,既简化了模型,也比较符合实际;

(2)不考虑初始和结束时的过渡期,考虑倾斜铸轧过程为稳态,且熔池 液位保持稳定;

- (3) 熔液视为不可压缩的牛顿流体;
- (4) 比热和粘度与温度有关,其它材料特性与温度无关;
- (5) 轧辊与凝固壳之间无相对滑动且接触良好;
- (6) 轧辊为刚性体且转速均匀;
- (7) 侧封板为绝热体;
- (8) 水口位置选定熔池液面中心且竖直;
- (9) 出口板材方向与两轧辊中心连线垂直;
- (10) 出口速度与轧辊切速度相同。

4.2 基本假设与控制方程

控制方程:

(1) 连续性方程	$\frac{u_{xz}}{xyz} \frac{u_{y}}{z} = 0$
(2)动量守恒方程	稳态三维湍流流动的Navier-Stokes方程
(3)能量方程	— СТиСТиСŦиCT — — txyz — КККК
(4) 湍流模型	Launder和Spalding提出的 双方程模型
(5) 其他问题的处理	凝固潜热、有效粘度

4.3 模拟过程中几个重要问题的处理

固相率与温度关系模型:

$$(T) \quad \begin{array}{cccc} 0 & T & T_l \\ T_l & T & T_s & T & T_l \\ \hline T_l & T_s & T_s & T & T_l \\ 1 & T & T_s \end{array}$$

凝固潜热的处理:

$$C_{l} \quad T \quad T_{l}$$

$$C_{r} \quad C_{l} \quad \frac{L}{T_{l} \quad T_{s}} \quad T_{s} \quad T \quad T_{l}$$

$$C_{s} \quad T \quad T_{s}$$

有效粘度的处理:

网格划分:

4.4 工艺参数对熔池内流场和温度场的影响

(1) 倾斜角度、液面高度和铸轧速度对流场和温度场的影响: 27组工况

4.5 工艺参数对熔池内流场和温度场的影响

University of Science and Technology Liaoning

模拟结果分析

液面高度80mm时:

(1)倾斜角度增加,左右两侧的不对称性增强。

(**2**)铸轧速度改变改变了熔池 内部凝固情况。

针对等径双辊倾斜铸轧,通过模 拟解决两个问题:

(1) 熔池左右的不对称性

(2) 固相区的位置随着三种参数的变化规律

University of Science and Technology Liaoning

倾斜角度的影响结果

倾斜角度增加, 不对称性增强

寧科技大学

4.5 熔池内流场和温度场不对称性分析

可以将线段从中点分成两段,对应对称 的点进行比较,然后求平均误差

不对称分析示意图

$$\frac{\overline{T}}{\overline{T}} = \frac{1}{m} \frac{m}{k-1} \frac{\overline{T}^{(k)}}{\overline{T}}$$

4.5 熔池内流场和温度场不对称性分析

"0"表示绝对对称,数值增加,说明不对称性增强。

60°线		Т		V		0.5T+0.5V				
归一化		70mm	80mm	90mm	70mm	80mm	90mm	70mm	80mm	90mm
5°	8	0.6	0.5	0.5	0.5	0.2	0.1	0.6	0.3	0.3
	10	0.5	0.4	0.8	0.3	0.3	0.2	0.4	0.4	0.5
	12	0.8	0.8	0.7	0.6	0.6	0.5	0.7	0.7	0.6
10°	8	0.6	1.0	0.5	0.4	0.7	0.2	0.5	0.8	0.4
	10	0.7	0.8	1.0	0.3	0.8	0.3	0.5	0.8	0.6
	12	0.8	0.8	0.9	1.0	1.0	0.3	0.9	0.9	0.6
15°	8		0.5	0.9		0.3	0.5		0.4	0.7
	10		0.5	0.7		0.6	0.5		0.5	0.6
	12		0.5	0.7		0.7	0.5		0.6	0.6

算出的参数结果与模拟出熔池的不对称性一致

4.6 工艺参数调整对熔池内流场和温度场不对称性影响

 $\beta = 5^{\circ}$, Vc=12m/min H-pool=90,

в.

5

.027

.053

.079

,105

.157

.184

4.6 工艺参数调整对熔池内流场和温度场不对称性影响

冷 却 水 的 影 响 结 果

University of Science and Technology Liaoning

5 双辊倾斜铸轧自适应模糊控制与实验

- 5.1 双辊倾斜铸轧熔池液位自适应模糊控制
- 5.2 双辊倾斜铸轧系统鲁棒自适应模糊控制
- 5.3 实验与分析

5.1 双辊倾斜铸轧熔池液位自适应模糊控制

双辊倾斜铸轧熔池液位的数学模型如下:

$$\frac{dH}{dt} = \frac{\frac{dh_s \ b \ ch_s \ LG \ R \ L(H \cos (2R \ G) \cos \sin)}{\sqrt{R^2 \ (R \ \frac{G}{2})^2 \sin^2)\frac{dG}{dt}}}$$
(5.1)

由式(5.1)可知, 塞棒高度h_s, 辊速, 辊缝G, 倾斜角度 等四个参数耦合在一起, 均直接影响熔池液位的稳定。

针对模型(5.1),熔池液位高度变化的动态模型可描述如下。 $\frac{dH}{dt} K^{-1}(G,H,)L^{-1}(ah_s b ch_s LG R$

$$L(H\cos (2R \ G)\cos \sin \sin \sqrt{R^2} (R \ \frac{G}{2})^2 \sin^2)\frac{dG}{dt})$$

$$\vec{K} = K(G,H, \) \ (2R \ G)\cos \sqrt{R^2} \ (H \ (2R \ G)\sin)^2 \ \sqrt{R^2} \ H^2$$

$$\ddagger :$$

(5.2)

5.1 双辊倾斜铸轧熔池液位自适应模糊控制

通过引入坐标变换

 x_1 H, x_2 $\frac{dH}{dt}$, u h_s 应用牛顿第二定律, (5.2) 可以转化为下面的单入单出非仿射非线性系统

$$\dot{x}_{1}$$
 x_{2}
 \dot{x}_{2} $f(x,G,\dot{G},\ddot{G}, , u)$ (5.3)
 $\stackrel{\text{t}}{=} \frac{\text{t}}{x} [x_{1},x_{2}]^{T}$ 代表状态变量
 $f(x,G,\dot{G},\ddot{G}, , u)$ 是未知的光滑的非仿射非线性函数

University of Science and Technology Liaoning

•52

5.2 双辊倾斜铸轧系统鲁棒自适应模糊控制

通过引入坐标变换, $x_{11} = G$, $x_{12} = \frac{dG}{dt}$, $x_{21} = H$, $x_{22} = \frac{dH}{dt}$, $u_2 = h_s$,由(6.2) 可得多输入多输出非仿射非线性系统

$$\begin{aligned} x_{i1} &= x_{i2} \\ \dot{x}_{i2} &= f_i(x, u_i) + d_i \\ y_i &= x_{i1}, i = 1, 2, \end{aligned} \tag{6.3}$$

式中: $x = [x_1, x_2]^T$, $x_i = [x_{i1}, x_{i2}]^T$ 为状态变量, d_i 为未知干扰, y_i 和 u_i 分别表示 第i个子系统的系统输出和控制输入, $f_i(x, u_i)$ 为未知光滑带有电动伺服电动机控制的 u_i 的非仿射非线性函数。

•54

University of Science and Technology Liaoning

在倾斜铸轧机上铸轧出7050铝合金薄板、AZ31镁合金薄板,并成功铸 轧出容易断带的AE44镁合金薄板。

遼寧科技大學

熔池液面高度为90mm,铸轧速度为8m/min,倾斜角度为10°条件下,通过改变浇注温度分别为943、933、923K,进行了三组倾斜铸轧实验。

元素	A1	RE(La Ce)	Zn	Mn	Fe	Mg
含量 <mark>%</mark>	3.99	4.34	0.02	0.36	0.002	Bal.

表 6.1 实验用 AE44 镁合金化学成分(质量分数, w%)

薄板表面: 冷却程度高,形 成典型的铸态枝 晶。

薄板内部: 芯部过冷强度 低,形成粗大枝 晶,在熔池内部 液、、在晶结构 化。 板晶长大粗化。

图 6.22 第一组 T=943k 薄板两端位置 RD 组织, (a)×100, (b)(c)×500

6.4 实验与分析

薄板表面: 主要是凝固组织的 等轴粗大晶粒。

薄板内部: 枝晶形成高度分支 的雪花状,为标准 基面结构组织,内 部流动性低,在枝 晶的主干上的一次 枝晶肩臂间距足够 大。

图 6.23 第一组 T=943k 薄板中间位置 RD 组织,(a)×100, (b)(c)×500

断面组织以混 合组织为主,晶 粒形态分布均 匀。

在铸轧辊的作 用下晶粒破碎重 新长大为粗大片 状晶粒。

图 6.24 第一组 T=943k 薄板 TD 组织, (a)×100, (b)(c)×500

6.4 实验与分析

第二组实验

University of Science and Technology Liaoning

遼寧科技大學 🗭

图 6.26 第二组 T=933k 薄板中间位置(a)和 TD(b)组织

6.4 实验与分析 第三组实验

合金组织是由α-Mg基 体和树枝状的稀土化合 物组成,铸轧方向上的 组织间没有发生分层现 象,整体以粗大枝晶均 匀分布在细小枝晶间的 形式存在

University of Science and Technology Liaoning

图 6.27

6.4 实验与分析

图 6.28 第三组 T=923k 薄板中间位置 RD 组织,(a)×100,(b)(c)×500

6.4 实验与分析

- 2 双辊倾斜铸轧过程数值模拟研究
- 3 双辊倾斜铸轧系统自适应模糊控制研究

遼寧科技大学

谢谢各位老师

University of Science and Technology Liaoning